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IMPORTANCE Norepinephrine is the first-line vasopressor for patients with septic shock.
When and whether a second agent, such as vasopressin, should be added is unknown.

OBJECTIVE To derive and validate a reinforcement learning model to determine the
optimal initiation rule for vasopressin in adult, critically ill patients receiving norepinephrine
for septic shock.

DESIGN, SETTING, AND PARTICIPANTS Reinforcement learning was used to generate the
optimal rule for vasopressin initiation to improve short-term and hospital outcomes,
using electronic health record data from 3608 patients who met the Sepsis-3 shock criteria at
5 California hospitals from 2012 to 2023. The rule was evaluated in 628 patients from the
California dataset and 3 external datasets comprising 10 217 patients from 227 US hospitals,
using weighted importance sampling and pooled logistic regression with inverse
probability weighting.

EXPOSURES Clinical, laboratory, and treatment variables grouped hourly for 120 hours in the
electronic health record.

MAIN OUTCOME AND MEASURE The primary outcome was in-hospital mortality.

RESULTS The derivation cohort (n = 3608) included 2075 men (57%) and had a median (IQR)
age of 63 (56-70) years and Sequential Organ Failure Assessment (SOFA) score at shock
onset of 5 (3-7 [range, 0-24, with higher scores associated with greater mortality]). The
validation cohorts (n = 10 217) were 56% male (n = 5743) with a median (IQR) age of 67
(57-75) years and a SOFA score of 6 (4-9). In validation data, the model suggested vasopressin
initiation in more patients (87% vs 31%), earlier relative to shock onset (median [IQR], 4 [1-8]
vs 5 [1-14] hours), and at lower norepinephrine doses (median [IQR], 0.20 [0.08-0.45] vs
0.37 [0.17-0.69] μg/kg/min) compared with clinicians’ actions. The rule was associated with
a larger expected reward in validation data compared with clinician actions (weighted
importance sampling difference, 31 [95% CI, 15-52]). The adjusted odds of hospital mortality
were lower if vasopressin initiation was similar to the rule compared with different
(odds ratio, 0.81 [95% CI, 0.73-0.91]), a finding consistent across external validation sets.

CONCLUSIONS AND RELEVANCE In adult patients with septic shock receiving norepinephrine,
the use of vasopressin was variable. A reinforcement learning model developed and validated
in several observational datasets recommended more frequent and earlier use of vasopressin
than average care patterns and was associated with reduced mortality.
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S epsis is common and can be fatal, accounting for more
than 270 000 deaths in the US annually.1 Emergency care
of patients with sepsis and life-threatening organ dys-

function includes fluid and vasopressor administration.2

International guidelines3 recommend using norepineph-
rine as the first-line vasopressor. They suggest considering
vasopressin as a second-line agent when blood pressure re-
mains poorly responsive to norepinephrine. However, septic
shock is a dynamic condition, complicating the decision to ini-
tiate vasopressin. Although vasopressin use has increased,4 it
is used inconsistently, and there is little guidance from ran-
domized clinical trials on optimal timing.

Reinforcement learning is a branch of machine learning
where a virtual agent learns from trial and error an optimized
set of treatment rules to maximize the probability of a good
outcome.5 It is well-suited for complex, dynamic problems like
septic shock. The Optimal Vasopressin Initiation in Septic Shock
(OVISS) study applied reinforcement learning in multiple elec-
tronic health record datasets to derive, validate, and measure
the treatment implications of a vasopressin initiation rule op-
timized to improve both short-term and hospital outcomes
among adult critically ill patients receiving norepinephrine for
septic shock.

Methods
This study is reported according to the TRIPOD+AI guidelines6

(Supplement 1). Certified deidentification removed the
institutional review board approval requirement for the Uni-
versity of California, San Francisco (UCSF) data. Medical
Information Mart for Intensive Care (MIMIC-IV) and eICU
Collaborative Research Database (eICU-CRD) data are pub-
licly available. Data from University of Pittsburgh Medical Cen-
ter (UPMC) were transferred to UCSF under a data-sharing
agreement (DUA00003086). The University of Pittsburgh
Institutional Review Board waived the requirement of writ-
ten informed consent (IRB number: STUDY19030218).

Derivation and Validation Cohorts
We developed a reinforcement learning model to identify
the optimal vasopressin initiation strategy (referred to as the
reinforcement learning rule) in critically ill patients with sep-
tic shock who are receiving norepinephrine. We assessed the
treatment implications of the rule by comparing the recom-
mendations provided by the reinforcement learning rule with
clinicians’ actual vasopressin initiation practices (referred to
as the clinician-observed action).

First, the training, testing, and internal validation of the
model used data from the UCSF De-Identified Clinical Data
Warehouse.7 These data included more than 120 000 critically
ill admissions from 2012 to 2023. We included unique patients
experiencing their first episode of community- or hospital-
onset septic shock, defined by the Sepsis-3 criteria,2 which could
be met in either the emergency department or intensive care
unit (ICU), and were already receiving norepinephrine.

Second, to externally validate the reinforcement learning
model, we used 3 datasets: MIMIC-IV,8 eICU-CRD,9 and a pre-

viously curated electronic health record dataset of adult criti-
cally ill patients admitted to 18 hospitals at UPMC from 2018
to 2020.10 These 3 databases include more than 250 000 ad-
missions in 227 US hospitals from 2008 to 2020. MIMIC-IV and
eICU-CRD contain only data during intensive care, while UPMC
includes data irrespective of critical care location. Abstracted
data included demographics, vital signs, severity of illness,
treatment, and laboratory results. Race was derived using fixed
categories consistent with the Centers for Medicare & Medic-
aid Services meaningful use dataset. Race and ethnicity data
were collected to ensure fairness and equity.

Data Preparation for Reinforcement Learning Models
UCSF data were split into derivation (training and test) and in-
ternal validation sets using a 70/15/15 random splitting proce-
dure. The validation cohorts consisted of the UCSF internal vali-
dation set and 3 external datasets (Figure 1). To prepare for
model training,11,12 each hospital stay was considered as a single
trajectory, discretized into 1-hour epochs starting at t = 1 hour
after shock onset. Data were truncated at the earliest of shock
recovery (defined as ≥12 hours off norepinephrine), ICU dis-
charge (dead or alive), or t = 120 hours.

Each patient was described by a fixed set of baseline char-
acteristics, including age, sex, height, weight, race and ethnic-
ity, Sequential Organ Failure Assessment (SOFA) score (range,
0-24 points, with higher scores indicating worse organ func-
tion), mean arterial pressure, serum lactate, norepinephrine
dose, fluid before inclusion, mechanical ventilation, continu-
ous kidney replacement therapy, and Charlson Comorbidity
Index score, a method of categorizing comorbidities based on
International Classification of Diseases, Ninth Revision (ICD-9)
diagnosis scores in administrative data (range, 0-37). Other data,
such as source of infection, microbiology, or time to source con-
trol, were not captured or would not be pragmatically avail-
able to clinicians at the time of vasopressor initiation.

Each 1-hour epoch was described by 14 clinical, time-
varying features (eTable 1 in Supplement 1), including patient
vital signs, laboratory measurements, and organ support
(eg, mechanical ventilation, kidney replacement therapy).

Key Points
Question Does a reinforcement learning model identify the
optimal initiation rule for vasopressin in patients with septic shock
who are receiving norepinephrine?

Findings Among 14 453 critically ill patients with septic shock
from 232 hospitals in 4 independent datasets, a reinforcement
learning model recommended the initiation of vasopressin more
frequently, sooner, at a lower norepinephrine dose, and at a lower
organ failure score compared with the average observed actions of
clinicians. Patients in whom vasopressin was initiated similarly, vs
differently, to that recommended by the reinforcement learning
model had statistically significantly reduced in-hospital mortality
(adjusted odds ratio, 0.81).

Meaning The initiation of vasopressin following
recommendations by a reinforcement learning model was
associated with decreased mortality in patients with septic shock
already receiving norepinephrine.
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Additional data included the volume of intravenous fluids ad-
ministered up to the current epoch after shock onset, includ-
ing colloids but excluding transfusion and medication fluids.
The mean vasopressor doses administered to each patient were
abstracted in each epoch. If a measurement was unavailable
for a given variable in a specific epoch, the last observed value
was carried forward, reflecting clinical practice.13 If multiple
measurements were available for a variable during an epoch,
the mean value was used.

Model Training
A reinforcement learning model is a specific type of machine
learning algorithm where an agent learns how to make deci-
sions by interacting with an environment. The agent aims to
maximize rewards over time by choosing actions based on the
current state, with the decision-making process guided by
the likelihood of future outcomes (eMethods and eFigure 1 in
Supplement 1).

We defined the action for each epoch as a binary decision
(eg, “start vasopressin” or “do not start vasopressin”). The
model reward per epoch was calculated as a weighted combi-
nation of in-hospital mortality, changes in serum lactate lev-
els, mean arterial pressure, SOFA score,14 and norepineph-
rine dose, with each element scaled by a predetermined
coefficient (eMethods in Supplement 1). Epsilon, a parameter
that balances exploration vs exploitation, was set at 0.99. We
further adjusted the model hyperparameters (ie, parameters
that influence how the learning process happens) and deter-
mined the optimal number of reinforcement learning algo-
rithm iterations (eMethods in Supplement 1). Assumptions re-
garding model parameters were tested in sensitivity analyses
(eMethods in Supplement 1).

Statistical Analysis
Continuous variables were described as mean (SD) or median
(IQR) and categorical variables as counts (percentage). For de-
scriptive analyses, the significance level was set at .05, with
no adjustment for multiple comparisons.

Evaluation and Treatment Implications
of the Reinforcement Learning Rule
Model performance was evaluated using weighted impor-
tance sampling,15 an off-policy evaluation16 method that com-
pares the mean individual reward obtained with the reinforce-
ment learning rule with the mean reward obtained from the
clinician-observed action. Weighted importance sampling and
the weighted importance sampling difference between the re-
inforcement learning rule and the clinician-observed action
were calculated in both internal and external validation data
for the overall reward and individual reward components
(eMethods in Supplement 1).17-19

We evaluated the treatment implications of the rule rec-
ommended by the reinforcement learning algorithm in the 3
external datasets. We described the percentage of patients who
would receive vasopressin, timing of initiation relative to shock
onset, dose of norepinephrine, SOFA score, and serum lac-
tate at vasopressin initiation under the clinician-observed
action and under the optimal reinforcement learning rule.

We used weighted pooled logistic regression to estimate
the adjusted odds of in-hospital mortality, comparing
patients in whom care was similar vs different to the rein-
forcement learning rule in each time block, treating time as a
discrete variable. Specifically, we defined concordance in
each time block as present if the clinician-observed action
matched the action recommended by the reinforcement
learning algorithm. To account for time-varying confounders
and treatment decisions being made hourly, the regression
model was also weighted using inverse probability of treat-
ment weighting20 (eMethods in Supplement 1). Predicted
probabilities from the model were used to estimate survival
curves, censored at 120 hours for illustration. This evaluation
also included assessment of risk-adjusted odds of in-hospital
mortality, comparing several simple rules for vasopressin
initiation vs observed clinical actions, including (1) vasopres-
sin initiation at a serum lactate level greater than 4 mmol/L,
(2) norepinephrine dose greater than 0.7 μg/kg/min, and
(3) mean arterial pressure less than 65 mm Hg and more than

Figure 1. Patient Accrual in a Study of a Reinforcement Learning Rule for Vasopressin Initiation in Septic Shock

499 596 Admissions in 4 datasets
(232 hospitals from 2008-2023)

14 453 Unique patients in septic shock

482 366 Excluded
475 881 Not in septic shock or

younger than 18 y
4391 No laboratory values
2094 Repeated septic shock

10 845 Included in validation cohort

3056 In external validation set from MIMIC-IV dataset
6251 In external validation set from UPMC dataset

910 In external validation set from eICU-CRD dataset
628 In internal validation set from UCSF dataset

3608 Included in derivation cohort
2979 In training set from UCSF dataset

629 In test set from UCSF dataset

eICU-CRD indicates eICU
Collaborative Research Database;
MIMIC-IV, Medical Information Mart
for Intensive Care; UCSF, University
of California, San Francisco;
UPMC, University of Pittsburgh
Medical Center.
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Table 1. Patient Characteristicsa

Characteristic

Derivation cohort,
No. (%)b Internal and external validation cohorts (validation set), No. (%)b

UCSF training
and test sets
(n = 3608)

UCSF internal
(n = 628)

MIMIC-IV
(n = 3056)

eICU-CRD
(n = 910)

UPMC
(n = 6251)

Summary of datasets

Enrollment period 2012-2023 2012-2023 2008-2019 2014-2015 2019-2020

No. of hospitals 5 5 1 208 18

Total No. of admissions 119 730 119 730 76 540 200 859 102 467

Setting Integrated health system Health systems
across US

Integrated health system
in Pennsylvania

California California Boston

Patient characteristics

Age, median (IQR), y 63 (56-70) 63 (56-69) 67 (56-77) 67 (57-77) 66 (57-75)

Admission weight,
median (IQR), kg

74 (62-90) 74 (61-90) 80 (66-96) 75 (64-96) 77 (54-97)

Sex

Male 2075 (57) 351 (56) 1820 (59) 468 (51) 3455 (55)

Female 1533 (43) 277 (44) 1236 (41) 442 (49) 2796 (45)

Racec

Black 342 (10) 65 (11) 262 (9) 86 (9) 716 (11)

White 1654 (45) 270 (44) 1858 (61) 640 (70) 4970 (80)

Other/unknownd 1612 (45) 293 (45) 936 (31) 184 (21) 565 (9)

Charlson Comorbidity
Index score, mean (SD)e

4 (2) 4 (1) 5 (2) 5 (3) 2 (1)

Clinical presentation

Heart rate, mean (SD),
beats/min

97 (25) 99 (24) 90 (22) 98 (24) 95 (25)

Systolic blood pressure,
median (IQR), mm Hg

105 (81-121) 112 (88-119) 102 (88-117) 104 (85-113) 102 (91-116)

Respiration rate, mean (SD),
breath/min

21 (6) 20 (5) 20 (6) 22 (8) 22 (7)

Temperature, mean (SD), °C 37.1 (1.9) 37.0 (1.9) 36.7 (1.0) 36.7 (1.3) 36.6 (1.4)

Glasgow Coma Scale score,
mean (SD)

11 (4) 10 (5) 10 (5) 12 (4) 10 (5)

SOFA score, median (IQR)f 5 (3-7) 5 (3-9) 4 (3-6) 4 (3-7) 5 (3-8)

Biological results

White blood cell count,
median (IQR), x109/L

13.2 (9.1-17.8) 13.2 (9.1-18.0) 12.5 (8.2-18.3) 12.4 (8.0-18.3) 13.8 (8.6-20.2)

Serum lactate,
median (IQR), mmol/L

1.9 (1.2-3.5) 1.8 (1.2-3.8) 1.8 (1.7-3.0) 1.8 (1.6-3.4) 2.8 (1.6-5.1)

Serum creatinine,
median (IQR), mg/dL

1.3 (0.9-2.2) 1.3 (0.8-2.2) 1.4 (1.0-2.1) 1.7 (1.1-2.7) 1.7 (1.1-2.8)

Blood urea nitrogen,
median (IQR), mg/dL

27 (17-45) 25 (15-44) 27 (17-42) 35 (23-51) 33 (20-51)

Hemoglobin, mean (SD),
g/dL

10.3 (2.3) 10.4 (2.3) 10.6 (2.7) 10.1 (2.6) 10.3 (2.8)

Platelet count, median
(IQR), x109/L

194 (131-289) 192 (130-287) 190 (129-270) 168 (97-237) 171 (103-250)

International normalized
ratio, median (IQR)

1.6 (1.2-2.0) 1.5 (1.2-1.9) 1.3 (1.2-1.7) 1.4 (1.2-1.8) 1.6 (1.3-2.1)

Bilirubin, median (IQR),
mg/dL

0.9 (0.4-1.1) 0.9 (0.5-1.1) 0.7 (0.4-1.3) 0.7 (0.4-1.2) 1.1 (0.6-2.3)

Organ support

Norepinephrine dose,
median (IQR), μg/kg/min

0.05 (0.03-0.10) 0.06 (0.03-0.10) 0.12 (0.06-0.23) 0.26 (0.12-0.46) 0.16 (0.06-0.45)

Vasopressin introduction
during shock

908 (25) 151 (24) 1485 (48) 179 (20) 1522 (24)

Mechanical ventilationg

At shock onset 692 (19) 127 (20) 22 (1) 77 (8) 3551 (57)

During the entire
trajectory

1252 (35) 225 (35) 225 (9) 124 (14) 4673 (75)

(continued)
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12 hours from shock onset. Secondary outcomes included the
use of mechanical ventilation and kidney replacement
therapy during the patient trajectory, conditional on not yet
receiving that level of organ support.

Robustness of Results to Confounding
Both the derivation of the rule and all validation exercises were
conducted in observational data. As such, the study is suscep-
tible to confounding bias, where features about the patients not
captured in the data nevertheless influenced both clinician ac-
tions and patient outcomes. Thus, we conducted 3 evalua-
tions of the robustness of our results to confounding (eMethods
in Supplement 1): (1) calculation of E-values,21 (2) inclusion of
ICU- and hospital-level features, and (3) falsification analyses,
using a negative outcome (“death occurring on odd vs even time
blocks”) and a negative exposure (“introduce vasopressin sys-
tematically 2 hours after shock onset”).22

Sensitivity Analyses
Several sensitivity analyses were performed. First, we at-
tempted further confounder control by repeating analyses in
restricted cohorts,23,24 including (1) patients for whom the
model recommended vasopressin and who actually received
it, (2) patients for whom the model advised against introduc-
ing vasopressin at any point in their treatment trajectory,
(3) after excluding patients with severe acute kidney injury
(eMethods in Supplement 1), and (4) patients in whom vaso-
pressin was started within 48 hours. These smaller cohorts re-
move patients in whom clinicians may have important un-
measured biases about the initiation of vasopressin. Second,
we assessed models after varying epsilon from 0.99 to 0.95 and
0.90. Third, we repeated models using 2-hour time epochs.

Fourth, we used alternative weighting for the reward in which
each component of the reward function was given the same
weight and repeated the analyses.

Reinforcement Learning Model Interpretability
To enhance interpretability, the contribution of each feature
in the reinforcement learning rule was quantified using Shapley
Additive Explanations (SHAP) values.25 Specifically, we ana-
lyzed SHAP values to determine the relative importance of clini-
cal features at the time the model recommended vasopressin
initiation (eMethods in Supplement 1).

Model Fairness and Equity
To study model fairness and equity, we stratified the evalua-
tion analyses and treatment implications by sex (male, female),
race (Black, White, and other/unknown), and age (<65 and
≥65 years).

Results
Patients
There were 14 453 adult patients with septic shock receiving
norepinephrine in the 4 datasets (Figure 1; Table 1). Of these,
3608 were randomly selected from the UCSF cohort for the deri-
vation cohort (median [IQR] age, 63 [56-70] years; 2075 [57%]
were male; median SOFA score at shock onset, 5 [3-7]). An ad-
ditional 628 UCSF patients comprised the internal validation
cohort, and external cohorts included 3056 patients from
MIMIC-IV, 910 patients from eICU-CRD, and 6251 patients from
UPMC (overall median [IQR] age, 67 [57-76] years; 5743 [56%]
were male; median SOFA score at shock onset, 6 [4-9]).

Table 1. Patient Characteristicsa (continued)

Characteristic

Derivation cohort,
No. (%)b Internal and external validation cohorts (validation set), No. (%)b

UCSF training
and test sets
(n = 3608)

UCSF internal
(n = 628)

MIMIC-IV
(n = 3056)

eICU-CRD
(n = 910)

UPMC
(n = 6251)

Kidney replacement
therapyh

At shock onset 168 (5) 27 (4) 22 (1) 11 (1) 421 (7)

During the entire
trajectory

268 (7) 36 (6) 504 (16) 141 (15) 1278 (20)

Outcome

In-hospital mortality 1603 (44) 254 (41) 1186 (38) 256 (28) 2705 (43)

Abbreviations: EHR, electronic health record; eICU-CRD, eICU Collaborative
Research Database; MIMIC-IV, Medical Information Mart for Intensive Care;
SOFA, Sequential Organ Failure Assessment; UCSF, University of California,
San Francisco; UPMC, University of Pittsburgh Medical Center.

SI conversion factors: To convert white blood cell count to /μL, divide by 0.001;
lactate to mg/dL, divide by 0.111; creatinine to μmol/L, multiply by 88.4; urea
nitrogen to mmol/L, multiply by 0.357; hemoglobin to g/L, multiply by 10.0;
platelet count to ×103/μL, divide by 1.0; bilirubin to μmol/L, multiply by 17.104.
a Each value represents the first-hour measurement at shock onset when

available; otherwise, the most recent value from the previous 24 hours was
used.

b Unless otherwise indicated.
c Race was self-reported by patients and recorded in the EHR. It was

categorized using fixed classifications aligned with the Centers for Medicare &
Medicaid Services’ EHR meaningful use dataset.

d Includes Asian, Chinese, Filipino, Hawaiian, Hispanic, Native
American/American Indian, and Other Pacific Islander.

e A method of categorizing comorbidities of patients based on the International
Classification of Diseases, Ninth Revision (ICD-9) diagnosis scores found in
administrative data; score ranges from 0 to 37.

f Corresponds to the severity of organ dysfunction, reflecting 6 organ systems
each; scores range from 0 to 4 points for the cardiovascular, hepatic,
hematologic, respiratory, neurological, and renal systems. The total score
range is 0 to 24 points.

g Corresponds to endotracheal or tracheostomy tube to assist or replace
spontaneous breathing.

h Term includes intermittent hemodialysis and continuous kidney replacement
therapy to assist kidney function.
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In the 3 external datasets, clinicians initiated vasopressin
in 3186 of 10 217 patients already receiving norepinephrine
(31%) (Table 2). Vasopressin was started at a median (IQR)
SOFA score of 9 (6-12), a median 5 (1-14) hours after shock
onset, norepinephrine dose of 0.37 (0.17-0.69) μg/kg/min,
and serum lactate of 3.6 (1.8-6.8) mmol/L. In-hospital mortal-
ity ranged from 28% to 43%. UPMC patients received more
organ support and the initiation of vasopressin by clinicians
began at a higher norepinephrine dose (UPMC, 0.6 μg/kg/min
vs UCSF, 0.14 μg/kg/min).

Evaluation of Reinforcement Learning Model for
Vasopressin Initiation
Among 2362 patients in whom vasopressin was recom-
mended by the reinforcement learning rule and initiated by cli-
nicians during their trajectory, 338 (14%) had vasopressin ini-
tiated in the same epoch as the reinforcement learning rule
recommendation. Compared with the clinician-observed ac-
tion in external data, the reinforcement learning model sug-
gested vasopressin initiation in more patients (8884 of 10 217
[87%]; P < .001), at a lower median (IQR) SOFA score (7 [5-10];
P < .001), earlier after shock onset (4 [1-8] hours; P < .001), at
lower norepinephrine doses (0.20 [0.08-0.45] μg/kg/min;
P < .001), and at lower serum lactate (2.5 [1.7-4.9] mmol/L;
P < .001) (Figure 2). These results were consistent across each
of the 3 validation sets, except for timing of vasopressin ini-
tiation in MIMIC-IV (median [IQR], 4 [1-12] hours for clinician-
observed action vs 5 [2-9] hours for reinforcement learning rule;
P = .01) (Table 2; eTable 2 in Supplement 1).

The reinforcement learning rule outperformed the
clinician-observed action (weighted importance sampling
difference, 31 [95% CI, 15-52]) (Figure 3). The weighted
importance sampling difference was consistent for each
component of the reward (in-hospital mortality, 29 [95% CI,
27-34]; mean arterial pressure, 32 [95% CI, 29-36]; SOFA
score, 28 [95% CI, 21-37]; norepinephrine dose, 35 [95% CI,
26-49]; and serum lactate, 25 [95% CI, 22-27]). These find-
ings were consistent across each of the datasets (Figure 3;
eTable 3 in Supplement 1).

Using pooled logistic regression with inverse probability
of treatment weighting in 3 external datasets, concordance with
the reinforcement learning rule in each time block was asso-
ciated with decreased odds of in-hospital mortality at each time
point (adjusted odds ratio [aOR], 0.81 [robust 95% CI, 0.73-
0.91]) (Figure 4; eFigure 2 in Supplement 1). Reinforcement
learning rule concordance was also associated with reduced
odds of requiring kidney replacement therapy at each time
point (aOR, 0.47 [robust 95% CI, 0.46-0.49]), but not with the
odds of requiring mechanical ventilation at each time point
(aOR, 1.00 [robust 95% CI, 0.96-1.04]) (eTable 4 in Supple-
ment 1). More simple decision rules for initiating vasopressin
were associated with statistically significantly worse odds of
in-hospital mortality compared with the clinician-observed
action (Figure 4).

Robustness to Confounding
First, these analyses were supported by an E-value of 1.46.
Second, when adding ICU- and hospital-level variables toTa
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models, the association between concordance and the odds of
in-hospital mortality at each time point was consistent (UPMC
aOR for in-hospital mortality, 0.87 [95% CI, 0.75-1.01]) (eTable 5
in Supplement 1). Third, falsification analyses found no asso-
ciation between concordance with the reinforcement learn-
ing rule and the negative outcome (aOR, 1.17 [robust 95% CI,
0.94-1.44]) nor between the negative exposure and mortality
(aOR, 1.10 [robust 95% CI, 0.94-1.30]).

Sensitivity Analyses
The model performed similarly among restricted cohorts of
patients in whom vasopressin was recommended or recom-
mended early (within 48 hours). The findings were neutral

when no vasopressin was recommended by the rule or if
vasopressin was already initiated by clinicians early (within
12 hours) (eTable 5 in Supplement 1). When the epsilon
parameter was varied, the weighted importance sampling
results were similar, but the association with mortality was
muted (epsilon, 0.95; aOR for in-hospital mortality, 0.91 [95%
CI, 0.79-1.11]). Models were not statistically significant using
a 2-hour time epoch or alternative reward weighting
(eTable 5 in Supplement 1).

Model Interpretability
According to SHAP values, the 4 most important features in-
forming the vasopressin initiation reinforcement learning rule

Figure 2. Comparison of Clinician-Observed Administration of Vasopressin With Treatment Recommended by the Reinforcement Learning Rule
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were the time since shock onset, SOFA score, norepinephrine
dose, and serum lactate at the time of vasopressin initiation
(eFigure 3 in Supplement 1).

Fairness and Equity
The reinforcement learning rule showed no significant differ-
ences in recommendations for vasopressin initiation across the
sex, race, and age subgroups (eFigure 4 in Supplement 1). There
was also no significant difference in the evaluation or treat-
ment implications of the reinforcement learning rule be-
tween the sex, race, and age subgroups (eTables 7 and 8 in
Supplement 1).

Discussion
In a multicenter study of 232 hospitals and 14 453 patients in
4 datasets, this study derived, validated, and tested the clini-
cal implications of a reinforcement learning model for vaso-
pressin initiation in patients with septic shock already receiv-
ing norepinephrine. Compared with average clinician actions,
the reinforcement learning rule was associated with a higher
reward and reduced in-hospital mortality.

International practice guidelines suggest vasopressin as the
second-line vasopressor if the mean arterial pressure re-
mains inadequate despite low to moderate norepinephrine
doses.3 While vasopressin use has increased,4 there are many

unanswered questions. There are no randomized clinical trials
that identify the optimal administration strategy, at what dose
of norepinephrine to initiate vasopressin, or how to wean the
drug. Randomized clinical trials, even those with 3 to 4 groups,
may not capture the universe of possible treatment ap-
proaches for vasopressor use. Meanwhile, prior work uses re-
inforcement learning to optimize complex medical deci-
sions, such as for the treatment of diabetes26,27 or mechanical
ventilation.18 Thus, this study reports the first evaluation of
reinforcement learning to enhance clinical decision-making for
the initiation of vasopressin in septic shock. The OVISS rein-
forcement learning rule suggests initiating vasopressin at a
lower norepinephrine dose compared with the average use of
nuanced clinicians in practice. These findings align with sub-
group analyses from the Vasopressin and Septic Shock Trial
(VASST),28 which suggested that patients who received vaso-
pressin may have improved outcomes in a less severe shock
stratum (interaction P = .10).

The reinforcement learning rule for vasopressin initia-
tion may improve outcomes through several mechanisms.
First, although clinicians had access to the same data, the rule
may capture subclinical features about the mechanisms and
benefits of vasopressin and thus assign different emphases to
clinical data to drive vasopressin initiation than assessments
by clinicians. Second, from a biological perspective, exog-
enous vasopressin may compensate for the relative defi-
ciency observed in septic shock.29-32 Third, vasopressin may

Figure 3. Weighted Importance Sampling
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Weighted importance
sampling (95% CI)

Overall reward 31 (15 to 52)
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In-hospital mortality 29 (27 to 34)

Internal validation

UCSF 15 (–48 to 129)

Mean arterial pressure 32 (29 to 36)

SOFA score 28 (21 to 37)

External validation

MIMIC-IV 33 (7 to 40)

eICU-CRD 22 (6 to 64)

UPMC 43 (26 to 59)

Norepinephrine dose 35 (26 to 49)

Serum lactate 25 (22 to 27)

Weighted importance sampling measures the mean individual reward obtained
using the reinforcement learning rule and the mean reward associated with the
clinician-observed actions. Weighted importance sampling was estimated in the
internal and external validation sets (overall reward) for each reward
component independently (reward component) and each internal and external
validation set separately (internal/external validation). Results are presented as
the difference in weighted importance sampling between the reinforcement
learning rule and the clinician’s observed rule, with bootstrapped 95% CIs.
A negative weighted importance sampling difference indicated that the
clinician-observed actions were associated with a higher reward, whereas
a positive difference suggested the reinforcement learning rule yielded a
higher reward. For example, the reinforcement learning rule was associated
with a higher overall reward (weighted importance sampling difference,

31 [95% CI, 15-52]) as well as higher rewards for each component individually.
In the UCSF internal validation set, the lower bound of the 95% CI crossed 0
(weighted importance sampling difference, 15 [95% CI, −48 to 129]), indicating
that the overall reward obtained with the reinforcement learning rule was not
statistically higher than that associated with the clinician-observed actions. The
dotted line is the reference line (ie, no difference in weighted importance
sampling between the algorithm rule and the clinician-observed actions).

eICU-CRD indicates eICU Collaborative Research Database; MIMIC-IV, Medical
Information Mart for Intensive Care; SOFA, Sequential Organ Failure
Assessment; UCSF, University of California, San Francisco; UPMC, University of
Pittsburgh Medical Center.
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increase glomerular filtration pressure,33 consistent with the
results herein where rule concordance was associated with a
lower need for kidney replacement therapy. Fourth, prior stud-
ies like Vasopressin vs Norepinephrine as Initial Therapy in
Septic Shock (VANISH) and VASST demonstrate vasopres-
sin’s catecholamine-sparing effects, which may reduce the
adrenergic burden and the need for high norepinephrine doses,
perhaps lowering the risk of tachyarrhythmias or myocardial
ischemia. Fifth, earlier vasopressin administration may re-
flect increased clinical vigilance and aggressive monitoring,
potentially leading to improved outcomes. Alternatively, al-
though the reinforcement learning rule appears to be associ-
ated with improved outcomes, there is the possibility that con-
founding obscured the true effects.

Limitations
This study has limitations. First, the study did not prospec-
tively test the reinforcement learning rule, instead using
offline data. Future bedside use requires more rigorous
assessments using randomized clinical trials. Second, the
model may have limited transportability to underrepresented
groups in the derivation data.34 To mitigate this, 4 datasets
from more than 200 hospitals were used. The study also
tested the reinforcement learning rule in age, sex, and race
strata, finding no significant differences. These analyses did
not include low- or middle-income countries with varying
practice.35 Third, because the models were derived offline
and evaluated using existing data, there were several factors,

such as clinician subjectivity, which were not fully captured
by the model. Analyses after adjustment for hospital- or ICU-
level characteristics were consistent. Fourth, models do not
include unmeasured variables, such as infectious source or
timing of source control, or seek to vary the lag adjustment
for confounding control. For the observed relationships to be
fully explained by these and other unmeasured confounders,
that confounder would need to increase both the likelihood
of adhering to the reinforcement learning rule and mortality
by more than 45%. Fifth, the study addressed missing values
by carrying forward the last observed value, a common
method that simplifies analysis and avoids introducing noise.
It offers a conservative estimate and was used in prior studies
with reinforcement learning.11,36 Sixth, the reinforcement
learning rule recommended the initiation of vasopressin, not
a dosing strategy or protocol for weaning. Seventh, long-term
outcomes among survivors, such as cognitive or functional
status, were not available.

Conclusions
In adult patients with septic shock receiving norepinephrine,
the use of vasopressin was variable. A reinforcement learning
model developed and validated in several observational data-
sets recommended more frequent and earlier use of vasopres-
sin than average care patterns and was associated with re-
duced mortality.

Figure 4. Risk-Adjusted Odds of In-Hospital Mortality Comparing Concordance With the Reinforcement Learning Rule or a Simple Clinical Rule
With Clinician-Observed Actions
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Distribution using a regular standard error estimator or a robust standard error
estimator. Reinforcement learning rule results displayed for combined
validation cohort as well as each individual cohort. Simple clinical decision rule
results displayed for combined validation cohort only. The risk-adjusted odds
for in-hospital mortality were derived from inverse probability of treatment
weighted pooled logistic regression models, adjusting for baseline and
time-varying confounders. The results for vasopressin initiated per the
reinforcement learning rule show the ORs for in-hospital mortality of
concordance with the reinforcement learning rule in each 1-hour epoch
compared with the clinician-observed actions for the overall external validation
set and for each external validation dataset separately. The results for

vasopressin initiated per the simple clinical rule show the ORs for in-hospital
mortality of concordance with 3 independent simple clinical rules for
vasopressin initiation in each 1-hour epoch for the overall external validation
set. The 3 simple rules are: “initiate vasopressin when serum lactate is
>4 mmol/L,” “initiate vasopressin when norepinephrine dose is >0.7 μg/kg/min,”
and “initiate vasopressin when MAP is <65 mm Hg and time from shock onset is
at least 12 hours.”

eICU-CRD indicates eICU Collaborative Research Database; MAP, mean arterial
pressure; MIMIC-IV, Medical Information Mart for Intensive Care; OR, odds ratio;
UPMC, University of Pittsburgh Medical Center.
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